# CONTROLLABILITY AND STABILIZATION OF THE PROGRAMMED MOTIONS OF A TRANSPORT ROBOT $\dagger$ 

Yu. K. ZOTOV<br>St Petersburg<br>(Received 6 January 2000)

A non-lincar mathematical model for the motion of a transport robot (TR) with a caterpillar chassis and with drives based on DC motors, which is a non-holonomic electromechanical system, is considered. Non-linear canonical transformations of the coordinates of the state and control space are constructed, which reduce the initial equations of motion of the TR to a simpler canonical form, which is convenient for analysing and synthesizing control systems for the TR. The conditions for the TR to be controllable as a controlled object are found. Algorithms are given for constructing programmed motions (PMs) of the TR. Stabilizing control laws are synthesized under which the PMs of the TR are asymptotically stable and transients of a specified nature are ensured. © 2001 Elsevier Science Ltd. All rights reserved.

## 1. FORMULATION OF THE PROBLEM

Consider a TR with a catcrpillar chassis, whose drives employ independently activated DC motors (DCMs), while the transmission mechanisms have absolutely rigid elements, in plane-parallel motion along a non-deformable horizontal base. Under a number of simplifying assumptions, the motion of the TR may be modelled by the following equation [1, pp. 112-116; 2]

$$
\begin{align*}
& \dot{x}_{c}=V_{c} \cos \psi_{c}, \dot{y}_{c}=V_{c} \sin \psi_{c} \\
& m_{0} \dot{V}_{c}=-k_{f 011} V_{c}-f_{1} m g+\left(Q_{u 1}+Q_{u 2}\right) / r \\
& J_{z} \ddot{\psi}_{c}=-k_{f 022} \dot{\psi}_{c}-f_{2} m g+\left(Q_{u 2}-Q_{u 1}\right) l / r  \tag{1.1}\\
& J_{i} \ddot{\alpha}_{i}+k_{f 1 i i} \dot{\alpha}_{i}+i_{p i}^{-1} \eta_{p i}^{-1} Q_{u i}=k_{m i} I_{a i} \\
& L_{a i} i_{a i}+R_{a i} l_{a i}+k_{e i} \dot{\alpha}_{i}=u_{a i} \\
& \alpha_{i}=i_{p i} q_{i} ; i=1,2
\end{align*}
$$

where $x_{c}$ and $y_{c}$ are the coordinates of the TR's centre of mass (the mid-point of the axis of the drive wheels (sprocket wheels)) in a fixed Cartesian system of coordinates $O x y ; \psi_{c}$ - the course angle - is the angle at which the TR's longitudinal axis is inclined to the $O x$, axis, $V_{c}=r\left(\dot{q}_{1}+\dot{q}_{2}\right) / 2$ is the velocity of the TR's centre of mass in the direction of its longitudinal axis, which coincides with the tangent to the TR's trajectory of motion, i.e. $V_{c}$ is the projection of the velocity vector $V_{c}$ of the centre of mass (which is also directed along the TR's longitudinal axis) onto the $C x^{\prime}$ axis of the attached (moving) system of coordinates $C x^{\prime} y^{\prime}$, whose $C x^{\prime}$ axis points from the centre of mass along the longitudinal axis of the body of the TR to the front part of the body, it is assumed that when $V_{c}>0$ the TR moves in a direction which coincides with that of the $C x^{\prime}$ axis, but if $V_{c}<0$, it moves in the direction opposite to that of $C x^{\prime}$, a dot over a symbol denotes the operation of differentiation with respect to the time $t, r$ and $\dot{q}_{1}$, $\dot{q}_{2}$ are the radius and angular velocities of the drive wheels (sprockets) of the left and right sides of the TR, respectively, $\psi_{c}=\left(\dot{q}_{2}-\dot{q}_{1}\right) r /(2 l)$ is the course angular velocity of the TR about a vertical axis passing through its centre of mass, $2 l$ is the width of the track of the TR, $Q_{u 1}$ and $Q_{u 2}$ are the components of the two-dimensional vector $Q_{u}=\operatorname{col}\left(Q_{u 1}, Q_{u 2}\right)$ of generalized torques $Q_{u 1}$ and $Q_{u 2}$ conveyed from the motor shafts through the transmission to the left and right driving wheels, $P_{u}=\left(Q_{u 1}+Q_{u 2}\right) / r=$ $P_{u 1}+P_{u 2}$ is the tractive force of the caterpillars, $P_{u i}=Q_{u i} / r$ is the tractive force of the $i$ th caterpillar, $M_{u}=\left(Q_{u 2}-Q_{u 1}\right) l / r$ is the torque generated by the tractive forces $P_{u 1}$ and $P_{u 2}$ of the caterpillars, $m_{0}$
$=m+2 J_{0} /\left(r^{2}\right)$ is the reduced mass of the TR, $m$ is the mass of the TR, $J_{0}$ is the reduced moment of inertia of all rotating parts and the caterpillar on one side of the TR, $J_{z}$ is the total moment of inertia of the TR about a vertical axis passing through the centre of mass, $k_{f 011}$ and $f_{1}$ are the coefficients of the drag force $F_{c}=-k_{f 011} V_{c}-f_{1} m g$ of linear motion of the TR, $g$ is the acceleration due to gravity, $k_{f 022}$ and $f_{2}$ are the coefficients of the drag torque $M_{c}=-k_{f 022} \psi_{c}-f_{2} m g$ of rotational motion of the TR about a vertical axis passing through the centre of mass, $\alpha_{i}$ is the angle of rotation of the shaft of the $i$ th motor.

$$
\begin{equation*}
I_{a}=\operatorname{col}\left(I_{a 1}, I_{a 2}\right) \tag{1.2}
\end{equation*}
$$

is the two-dimensional vector of the currents $I_{a 1}$ and $I_{a 2}$ in the armature circuits of the DCMs, $J_{i}$ is the moment of inertia of the rotor of the $i$ th motor, $k_{f 1 i i}$ is the coefficient of the drag torque of viscous friction $M_{c i}=-k_{f 1 i i} \alpha_{i}$ on the shaft of the $i$ th motor, $i_{p i}$ and $\eta_{p i}$ are the transfer coefficient and efficiency of the $i$ th reduction gear of the transmission, $k_{m i}$ is the coefficient of the electromagnetic moment $M_{i}=k_{m i} I_{a i}$ of the $i$ th DCM, $L_{a i}$ and $R_{a i}$ are the total inductance and resistance of the armature circuit of the $i$ th DCM, $k_{e i}$ is the coefficient of proportionality of the back emf $u_{e i}=k_{e i} \alpha_{i}$ of the $i$ th DCM

$$
\begin{equation*}
u_{a}=\operatorname{col}\left(u_{a 1}, u_{a 2}\right) \tag{1.3}
\end{equation*}
$$

is the two-dimensional vcctor of voltages $u_{a 1}$ and $u_{a 2}$ applied to the armature circuits of the DCM and

$$
\dot{q}=\left\|\dot{q}_{1}\right\|=x_{0}\left\|\begin{array}{c}
V_{c}  \tag{1.4}\\
\dot{q}_{2}
\end{array}\right\|,\left\|\begin{array}{c}
P_{u} \\
M_{u}
\end{array}\right\|=x_{0}^{*} Q_{u}, \quad x_{0}=\left\|\begin{array}{cc}
1 / r-l / r \\
1 / r l / r
\end{array}\right\|
$$

where the asterisk denotes transposition.
Note that, since the first two equations in the system of equations of motion (1.1) of the TR describe non-holonomic constraints [3] implemented by contact between the caterpillar chassis and the supporting horizontal surface (realized by the driving [sprocket] wheels of the caterpillar chassis), it follows that model (1.1) for the dynamics of the TR is a non-holonomic electromechanical system.

Eliminating the variables $Q_{u 1}, Q_{u 2}, \alpha_{1}, \alpha_{2}$, from Egs (1.1) and also using notation (1.2) and (1.3) and relations (1.4), we obtain the equations of motion of the TR as a system of non-linear ordinary differential equations (ODEs) in the variables $x_{c}, y_{c}, V_{c}, I_{a}, I_{a}$

$$
\begin{align*}
& \dot{x}_{c}=V_{c} \cos \psi_{c}, \dot{y}_{c}=V_{c} \sin \Psi_{c} \\
& \left\|\begin{array}{l}
V_{c} \\
\dot{\psi}_{c}
\end{array}\right\|^{\bullet}=-k_{f}\left\|\begin{array}{l}
V_{c} \\
\dot{\psi}_{c}
\end{array}\right\|-F_{f}+A^{-1} I_{a}  \tag{1.5}\\
& i_{a}=L_{a}^{-1}\left(u_{a}-R_{\dot{a}} I_{a}-k_{e} i_{p} x_{0}\left\|\begin{array}{l}
V_{c} \\
\dot{\Psi}_{c}
\end{array}\right\|\right)
\end{align*}
$$

where

$$
\begin{align*}
& A=\Theta_{1}+\Theta_{0} A_{0}=\left\|a_{i j}\right\|_{i, j=1,2}, A_{0}=\operatorname{diag}\left\|m_{0}, J_{z}\right\| \\
& \Theta_{0}=k_{m}^{-1} i_{p}^{1} \eta_{p}^{-1}\left[x_{0}^{*}\right]^{-1}, \Theta_{1}=k_{m}^{-1} J i_{p} x_{0} \\
& k_{f}=A^{-1} k_{m}^{-1}\left[i_{p}^{-1} \eta_{p}^{-1}\left(x_{0}^{*}\right)^{-1} k_{f 0}+k_{f 1} i_{p} x_{0}\right]=\left\|k_{f i j}\right\|_{i, j=1,2}  \tag{1.6}\\
& F_{f}=\operatorname{col}\left(F_{f 1}, F_{f 2}\right)=A^{-1} \Theta_{0}\left\|\begin{array}{l}
f_{1} m g \\
f_{2} m g
\end{array}\right\|
\end{align*}
$$

$A=\Theta_{0}, \Theta_{1}, k f$ are constant $2 \times 2$ matrices, $F_{j}$ is a two-dimensional vector and $A_{0}$ and $J, k_{f 0}, k_{f 1}, i_{p}, \eta_{p}$, $k_{m}, L_{a}, R_{a}, k_{e}$, are diagonal $2 \times 2$ matrices with diagonal elements $m_{0}, J_{z}$ and $J_{i}, k_{f(i i}, k_{f 1 i i}, i_{p i}, \eta_{p i}, k_{m i}$, $L_{a i}, R_{a i}, k_{e i},(i=1,2)$, respectively.

We apply non-singular linear transformations of the variables $I_{a}(1.2)$ and the controls $u_{a}$ using the formulae

$$
\begin{gather*}
\bar{I}_{a}=\operatorname{col}\left(\bar{I}_{a 1}, \bar{I}_{a 2}\right)=A^{-1} I_{a}  \tag{1.7}\\
\bar{u}_{a}=\operatorname{col}\left(\bar{u}_{a 1}, \bar{u}_{a 2}\right)=A^{-1} L_{a}^{-1} u_{a} \tag{1.8}
\end{gather*}
$$

We assume that the auxiliary controls $\bar{u}_{a 1}, \bar{u}_{a 2}$ are such that

$$
\begin{equation*}
\dot{\bar{u}}_{a 1}=u_{1}, \bar{u}_{a 2} \equiv u_{2} \tag{1.9}
\end{equation*}
$$

where $u_{1}$ and $u_{2}$ are the components of the vector of controls

$$
\begin{equation*}
u=\operatorname{col}\left(u_{1}, u_{2}\right) \tag{1.10}
\end{equation*}
$$

applied to the inputs of system (1.5)-(1.9).
Then the equations of motion of the TR (1.5)-(1.10) may be written as a system of non-linear ODEs

$$
\begin{equation*}
\dot{z}=F(z, u), \quad z_{0}=z\left(t_{0}\right), t \geqslant t_{0} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{align*}
& z=\operatorname{col}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)  \tag{1.12}\\
& z_{1}=\operatorname{col}\left(x_{c}, y_{c}\right), z_{2}=\operatorname{col}\left(V_{c}, \psi_{c}\right), z_{3}=\operatorname{col}\left(\bar{I}_{a 1}, \dot{\psi}_{c}\right), z_{4}=\operatorname{col}\left(\bar{u}_{a 1}, \bar{I}_{a 2}\right) \\
& F(z, u)=\operatorname{col}\left(F_{1}\left(z_{2}\right), F_{2}\left(z_{2}^{3}\right), F_{3}\left(z_{2}^{4}\right), F_{4}\left(z_{2}^{4}, u\right)\right)  \tag{1.13}\\
& z_{i}=\operatorname{col}\left(z_{i 1}, z_{i 2}\right), \quad z_{i}^{j}=\operatorname{col}\left(z_{i}, z_{i+1}, \ldots, z_{j}\right), j \geqslant i ; z_{i}^{i}=z_{i}
\end{align*}
$$

$$
\begin{aligned}
& F_{1}\left(z_{2}\right)=\operatorname{col}\left(z_{21} \cos z_{22}, z_{21} \sin z_{22}\right) \\
& F_{2}\left(z_{2}^{3}\right)=C_{20}+C_{22} z_{21}+D_{2} z_{3} \\
& F_{3}\left(z_{2}^{4}\right)=C_{30}+C_{32} z_{32}+C_{33} z_{3}+D_{3} z_{4} \\
& F_{4}\left(z_{2}^{4}, u\right)=C_{42} z_{21}+C_{43} z_{3}+C_{44} z_{42}+u \\
& C_{20}=\left\|\begin{array}{c}
-F_{f 1} \\
0
\end{array}\right\|, C_{22}=\left\|\begin{array}{c}
-k_{f 11} \\
0
\end{array}\right\|, D_{2}=\left\|\begin{array}{cc}
1 & -k_{f 12} \\
0 & 1
\end{array}\right\| \\
& C_{30}=\left\|\begin{array}{c}
0 \\
-F_{f 2}
\end{array}\right\|, C_{32}=\left\|\begin{array}{c}
-\bar{k}_{e 11} \\
-k_{f 21}
\end{array}\right\|, C_{33}=\left\|\begin{array}{cc}
-\bar{R}_{a 11} & -\bar{k}_{e 12} \\
0 & -k_{f 22}
\end{array}\right\| \\
& D_{3}=\left\|\begin{array}{cc}
1 & -\bar{R}_{a 12} \\
0 & 1
\end{array}\right\|, C_{42}=\left\|\begin{array}{c}
0 \\
-\bar{k}_{e 21}
\end{array}\right\|, C_{43}=\left\|\begin{array}{cc}
0 & 0 \\
-\bar{R}_{a 21} & -\bar{k}_{e 22}
\end{array}\right\| \\
& C_{44}=\left\|\begin{array}{c}
0 \\
-\bar{R}_{a 22}
\end{array}\right\|, \bar{R}_{a}=A^{-1} L_{a}^{-1} R_{a} A=\left\|\bar{R}_{a i j}\right\|_{i, j=1.2} \\
& \bar{k}_{c}=A^{-1} L_{a}^{-1} k_{e} i_{p} x_{0}=\left\|\bar{k}_{e i j}\right\|_{i, j=1,2}
\end{aligned}
$$

Note that the state vector $z$ (1.12) of system (1.11)-(1.13) is related to the state vector

$$
\begin{align*}
& \bar{z}=\operatorname{col}\left(\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}, \bar{z}_{4}\right) \\
& \bar{z}_{1}=\operatorname{col}\left(x_{c}, y_{c}\right), \bar{z}_{2}=\operatorname{col}\left(V_{c}, \psi_{c}\right), \bar{z}_{3}=\dot{\psi}_{c}, \bar{z}_{4}=I_{a}=\operatorname{col}\left(I_{a 1}, I_{a 2}\right) \tag{1.14}
\end{align*}
$$

of the initial equations of the TR (1.5), (1.6) by a linear transformation

$$
\begin{equation*}
z=H_{1} \bar{z}+H_{0} u_{a} \tag{1.15}
\end{equation*}
$$

and the vector $\bar{z}$ is related to the vector $z$ by a linear transformation

$$
\begin{equation*}
\bar{z}=H_{2} z \tag{1.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{1}=\operatorname{diag}\left(I_{4}, H_{11}\right), H_{11}=\left\|\begin{array}{ccc}
0 & a_{111} & a_{112} \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & a_{121} & a_{122}
\end{array}\right\|, H_{0}=\left\|\begin{array}{c}
o_{6 \times 2} \\
h_{1}^{*} A^{-1} L_{a}^{-1} \\
O
\end{array}\right\| \\
& H_{2}=\operatorname{diag}\left(I_{4}, H_{21}\right), H_{21}=\left\|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
a_{11} & 0 & 0 & a_{12} \\
a_{21} & 0 & 0 & a_{22}
\end{array}\right\|
\end{aligned}
$$

$H_{1}, H_{11}$ and $H_{0}$ are $8 \times 7,4 \times 3$ and $8 \times 2$ matrices, respectively, $I_{m}$ is the $m \times m$ identity matrix, $O_{6 \times 2}$ is the $6 \times 2$ zero matrix, $O$ is the zero vector (matrix) of suitable dimension, $h_{1}=\operatorname{col}(1,0)$ is a twodimensional vector, $A^{-1}=A_{1}=\left\|a_{1 i j}\right\|_{i, j=1,2}$ and $H_{2}$ and $H_{21}$ are $7 \times 8$ and $3 \times 4$ matrices, respectively.

We also note that, for the initial model (1.5), (1.6) of the dynamics of the TR, it follows from Eqs (1.8) and (1.9) that the components $u_{a 1}$ and $u_{a 2}$ of the vector of voltages $u_{a}$ (1.3) applied to the armature circuits of the DCMs are related to the components $u_{1}$ and $u_{2}$ of the vector of controls $u(1.10)$ by the relations

$$
\begin{equation*}
u_{a j}=u_{a j}(t)=L_{a j} a_{j 1} \int_{t_{0}}^{\prime} u_{1}(\tau) d \tau+L_{a j} a_{j 2} u_{2}(t), j=1,2, t \geqslant t_{0} \tag{1.17}
\end{equation*}
$$

and consequently the initial equations of motion (1.5), (1.6), (1.17) of the TR are equivalent, in view of formulae (1.7)-(1.9), (1.14)-(1.16), to the model of the TR dynamics represented by system (1.11)-(1.13), (1.10). In what follows, therefore, the formulation and solution of the problem will be given for the model of the TR dynamics (1.11)-(1.13), (1.10).
System (1.11)-(1.13), (1.10) is said to be controllable [4] if, for any two states $z_{p 0} \in R^{8}$ and $z_{p 1} \in R^{8}$ (where $R^{n}$ is a Euclidean $n$-space) and any $t_{0}<t_{1}, t_{1}-t_{0}<\infty$, a control $u=u(t)(1.10)$ exists such that the corresponding solution $z(t)(1.12)$ of system (1.11)-(1.13) satisfies the boundary (initial-boundary) conditions

$$
\begin{equation*}
z\left(t_{0}\right)=z_{p 0}, z\left(t_{1}\right)=z_{p 1} \tag{1.18}
\end{equation*}
$$

A solution

$$
\begin{equation*}
z=z_{p}(t), t \in\left[t_{0}, t_{1}\right] \tag{1.19}
\end{equation*}
$$

of system (1.11)-(1.13), (1.10) satisfying boundary conditions (1.18) will be called a programmed motion (PM), and the corresponding control

$$
\begin{equation*}
u=u_{p}(t), t \in\left[t_{0}, t_{1}\right] \tag{1.20}
\end{equation*}
$$

will be called a programmed control.
We will consider some $\mathrm{PM} z_{p}(t)(1.19),(1.18)$ of system (1.11)-(1.13), (1.10). We shall say that it is stabilizable if a control law with feedback with respect to the state vector $z$, of the form

$$
\begin{equation*}
u=u(t, z), t \geqslant t_{0} \tag{1.21}
\end{equation*}
$$

exists such that the $\operatorname{PM} z_{p}(t)(1.19)$, (1.18) is asymptotically stable.
The problems considered below consist of investigating the controllability and stabilizability conditions for the mathematical model (1.11)-(1.13), (1.10) of the TR as a controlled object. Algorithms will be described for constructing a PM and for synthesizing stabilizing control laws.

## 2. THE EQUATIONS OF MOTION OF THE TR IN CANONICAL FORM

The methods proposed below to investigate the conditions for controllability of the TR, the algorithms for constructing a PM, for synthesizing stabilizing controls and for analysing the stability of a PM are based on reducing the initial model (1.11)-(1.13), (1.10) of the TR's motion to canonical form, using non-linear transformations of the coordinates of the state and control space.

We will define a canonical form for describing the cquations of motion of the TR to be their representation as a linear ODE

$$
\begin{equation*}
\dot{x}=P x+Q w, x\left(t_{0}\right)=x_{0}, t \geqslant t_{0} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
x=\operatorname{col}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), w=\operatorname{col}\left(w_{1}, w_{2}\right) \\
x_{1}=\operatorname{col}\left(x_{c}, y_{c}\right), x_{i}=\operatorname{col}\left(x_{i 1}, x_{i 2}\right)=\dot{x}_{i-1}=x_{i}^{(i-1)}, i=2,3,4  \tag{2.2}\\
P=\left\|\begin{array}{ll}
O & I_{6} \\
O & O
\end{array}\right\|, Q=\left\|\begin{array}{l}
O \\
I_{2}
\end{array}\right\| \tag{2.3}
\end{gather*}
$$

$x$ and $x_{0}$ are the eight-dimensional vectors of the canonical state variables of the TR at the actual and initial times, respectively, $x_{1}^{(i)}=x_{1}^{(i)}(t)$ is the ith derivative with respect to $t$ of $x_{1}=x_{1}(t), x_{1}^{(0)}=x_{1}$; $x_{i}=x_{1}^{(i)}, w$ is the two-dimensional vector of "canonical" controls and $P$ and $Q$ are constant $8 \times 8$ and $8 \times 2$ block matrices.

## 3. REDUCTION OF THE EQUATIONS OF MOTION OF THE TR TO CANONICAL FORM

We will construct a transformation of coordinates in the state space $z$ and control space $u$ of the initial equations of motion (1.11)-(1.13), (1.10), which reduce them to the simpler canonical form (2.1)-(2.1).We will seek transformations in the form

$$
\begin{gather*}
x=\Psi(z)  \tag{3.1}\\
w=\Psi_{5}\left(z_{2}^{4}, u\right) \tag{3.2}
\end{gather*}
$$

where $\Psi$ and $\Psi_{5}$ are eight- and two-dimensional vector functions.

$$
\begin{gather*}
\Psi(z)=\operatorname{col}\left(\Psi_{1}\left(z_{1}\right), \quad \Psi_{2}\left(z_{2}\right), \quad \Psi_{3}\left(z_{2}^{3}\right), \Psi_{4}\left(z_{2}^{4}\right)\right)  \tag{3.3}\\
x_{1}=\Psi_{1}\left(z_{1}\right)=z_{1} \tag{3.4}
\end{gather*}
$$

and $\Psi_{i}(i=2,3,4,5)$ are two-dimensional vector-functions to be determined.
We will now describe an algorithm to determine the unknown vector functions $\Psi_{i}(i=2,3,4,5)$. To do this, consider the identities

$$
\begin{equation*}
\dot{x}_{1}=\dot{\Psi}_{1}\left(z_{1}\right)=\dot{z}_{1}, \quad x_{1}^{(i)}=\dot{x}_{i}=\dot{\Psi}_{i}\left(z_{2}^{i}\right)=\sum_{k=2}^{i} \frac{\partial \Psi_{i}\left(z_{2}^{i}\right)}{\partial z_{k}} \dot{z}_{k}, \quad i=2,3,4 \tag{3.5}
\end{equation*}
$$

where $\partial \Psi_{i}\left(z_{2}^{i}\right) / \partial z_{k}$ is the $m \times m$ Jacobian. Substituting into (3.5) the time derivatives $\dot{x}_{i}(i=1,2,3,4)$ along trajectories of system (2.1)-(2.3) and $\dot{z}_{i}(i=1,2,3,4)$ along trajectories of system (1.11)-(1.13), (1.10), we obtain the relations

$$
\begin{gather*}
x_{2}=F_{1}\left(z_{2}\right)=\left\|z_{21} \cos z_{22}\right\| z_{21} \sin z_{22} \| \equiv \Psi_{2}\left(z_{2}\right)  \tag{3.6}\\
x_{3}=\frac{\partial \Psi_{2}\left(z_{2}\right)}{\partial z_{2}} F_{2}\left(z_{2}^{3}\right)=L_{2}\left(z_{2}\right) F_{2}\left(z_{2}^{3}\right)=K_{3}\left(z_{2}\right)+L_{3}\left(z_{2}\right) z_{3} \equiv \Psi_{3}\left(z_{2}^{3}\right)  \tag{3.7}\\
\left(x_{2}=\dot{x}_{1}, x_{3}=\dot{x}_{2}=x_{1}^{(2)}\right) \\
L_{2}\left(z_{2}\right)=\frac{\partial \Psi_{2}\left(z_{2}\right)}{\partial z_{2}}=\frac{\partial F_{1}\left(z_{2}\right)}{\partial z_{2}}=\left\|\begin{array}{ll}
\cos z_{22} & -z_{21} \sin z_{22} \| \\
\sin z_{22} & z_{21} \cos z_{22}
\end{array}\right\|  \tag{3.8}\\
K_{3}\left(z_{2}\right)=L_{2}\left(z_{2}\right)\left(C_{20}+C_{22} z_{21}\right), L_{3}\left(z_{2}\right)=L_{2}\left(z_{2}\right) D_{2}  \tag{3.9}\\
x_{4}=\sum_{k=2}^{3} \frac{\partial \Psi_{3}\left(z_{2}^{3}\right)}{\partial z_{k}} F_{k}\left(z_{2}^{k+1}\right)=K_{4}\left(z_{2}^{3}\right)+L_{4}\left(z_{2}\right) z_{4} \equiv \Psi_{4}\left(z_{2}^{4}\right)  \tag{3.10}\\
\left(x_{4}=\dot{x}_{3}=x_{1}^{(3)}\right) \\
K_{4}\left(z_{2}^{3}\right)=\frac{\partial \Psi_{3}\left(z_{2}^{3}\right)}{\partial z_{2}} F_{2}\left(z_{2}^{3}\right)+L_{3}\left(z_{2}\right)\left[C_{30}+C_{32} z_{21}+C_{33} z_{3}\right]  \tag{3.11}\\
L_{4}\left(z_{2}\right)=\frac{\partial \Psi_{3}\left(z_{2}^{3}\right)}{\partial z_{3}} D_{3}=L_{3}\left(z_{2}\right) D_{3} \\
w=\sum_{k=2}^{3} \frac{\partial \Psi_{4}\left(z_{2}^{4}\right)}{\partial z_{k}} F_{k}\left(z_{2}^{k+1}\right)+\frac{\partial \Psi_{4}\left(z_{2}^{4}\right)}{\partial z_{4}} F_{4}\left(z_{2}^{4}, u\right)= \\
=K_{5}\left(z_{2}^{4}\right)+L_{5}\left(z_{2}\right) u \equiv \Psi_{5}\left(z_{2}^{4}, u\right)  \tag{3.12}\\
\left(w=\dot{x}_{4}=x_{1}^{(4)}\right) \\
K_{5}\left(z_{2}^{4}\right)=\sum_{k=2}^{3} \frac{\partial \Psi_{4}\left(z_{2}^{4}\right)}{\partial z_{k}} F_{k}\left(z_{2}^{k+1}\right)+L_{4}\left(z_{2}\right)\left(C_{42} z_{21}+C_{43} z_{3}+C_{44} z_{42}\right)  \tag{3.13}\\
L_{5}\left(z_{2}\right)=\frac{\partial \Psi_{4}\left(z_{2}^{4}\right)}{\partial z_{4}}=L_{4}\left(z_{2}\right)
\end{gather*}
$$

We have thus constructed the initial transformations (3.1) and (3.2) in analytical form (3.1), (3.3), (3.4), (3.6)-(3.11) and (3.12), (3.13), respectively.

It will now be shown that the initial transformation just constructed, (3.1), (3.3), (3.4), (3.6)-(3.11) and (3.12), (3.13), are uniquely solvable for $z$ and $u$, respectively. By virtue of (3.4), we have

$$
\begin{equation*}
z_{1}=\Phi_{1}\left(x_{1}\right)=x_{1} \tag{3.14}
\end{equation*}
$$

Let us compute the principal minors $\Delta_{1}$ and $\Delta_{2}$ of the matrix $L_{2}$ (3.8)

$$
\begin{align*}
& \Delta_{1}=\cos z_{22}>0 \text { for } z_{22} \in \Omega_{z 22}=(-\pi / 2, \pi / 2) \\
& \Delta_{2}=z_{12} \neq 0 \text { for } z_{21} \in \Omega_{z 21}= \begin{cases}\Omega_{22}^{+}, & \text {if } z_{21}=V_{c}>0 \\
\Omega_{z 21}^{-}, & \text {if } z_{21}=V_{c}<0\end{cases} \tag{3.15}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{z 21}^{+} \equiv\left(\varepsilon_{V}, k_{V}\right) \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{z 21}^{-} \equiv\left(-k_{V},-\varepsilon_{V}\right) \tag{3.17}
\end{equation*}
$$

and $\varepsilon_{v}$ and $k_{\nu}$ are certain positive real numbers, $0<\varepsilon_{\nu}<k_{v}<\infty$.
Throughout what follows, to fix our ideas (to avoid superfluous notation and repetition of derivations), we will consider the case in which the set $\Omega_{z 21}$, occurring in (3.15), is of the form (3.16), i.e.

$$
\begin{equation*}
\Omega_{z 21}=\Omega_{z 21}^{+} \equiv\left(\varepsilon_{V}, k_{V}\right) \tag{3.18}
\end{equation*}
$$

and we introduce a certain parameter $\rho=1$ corresponding to that case.
Note that the case in which the set $\Omega_{z 21}$, occurring in (3.15), is of the form (3.17), i.e.

$$
\begin{equation*}
\Omega_{z 21}=\Omega_{z 21}^{-} \equiv\left(-k_{V},-\varepsilon_{V}\right) \tag{3.19}
\end{equation*}
$$

is treated in exactly the same way, provided that throughout the following Sections 2-6 one replaces set (3.16) by set (3.17), set (3.18) by set (3.19), and $\rho=1$ by $\rho=-1$. This yields estimates and propositions similar to those formulated below.

In the case when the set $\Omega_{z 21}$, occurring in (3.15), is of the form (3.18), it follows from Theorem 20.9 in [5, p. 484] that transformation (3.6) is uniquely solvable for $z_{2}$ in the rectangular domain

$$
\begin{equation*}
\Omega_{\Psi 2}=\left\{z_{2}=\operatorname{col}\left(z_{21}, z_{22}\right) \in R^{2}: z_{21} \in \Omega_{z 21} \equiv \Omega_{z 21}^{+}, z_{22} \in \Omega_{z 22}\right\} \tag{3.20}
\end{equation*}
$$

that is, the following inverse transformation exists

$$
\begin{gather*}
z_{2}=\Phi_{2}\left(x_{2}\right)  \tag{3.21}\\
\Phi_{2}\left(x_{2}\right)=\operatorname{col}\left(\Phi_{21}\left(x_{2},\right), \Phi_{22}\left(x_{2}\right)\right)  \tag{3.22}\\
\Phi_{21}\left(x_{2}\right)=\rho \cdot\left(x_{21}^{2}+x_{22}^{2}\right)^{1 / 2} \equiv z_{21}=V_{c} \in \Omega_{221} \equiv \Omega_{z 21}^{+}, \rho=1, x_{2} \in \Omega_{\Phi_{2}}  \tag{3.23}\\
\Phi_{22}\left(x_{2}\right)=\operatorname{arctg}\left(x_{22} / x_{21}\right) \in \Omega_{z 22}, x_{2} \in \Omega_{\Phi_{2}}  \tag{3.24}\\
\Omega_{\Phi_{2}}=\left\{x_{2}=\operatorname{col}\left(x_{21}, x_{22}\right) \in R^{2}: x_{21} \in\left\{R^{1} \backslash 0\right\}, x_{22} \in R^{1}\right. \\
\left.z_{2}=\Phi_{2}\left(x_{2}\right) \in \Omega_{\Psi_{2}}\right\} \tag{3.25}
\end{gather*}
$$

Furthermore, since the matrices $L_{2}$ (3.8), $L_{3}(3.9), L_{4}(3.11)$ and $L_{5}$ (3.13) are such that $\left|\operatorname{det} L_{i}\left(z_{2}\right)\right|=$ $\left|z_{21}\right|>\varepsilon_{v}>0(i=2,3,4,5)$ for $z_{2} \in \Omega \Psi_{2}$, it follows that

$$
\begin{equation*}
\operatorname{rank} L_{i}\left(z_{2}\right)=2, \quad z_{2} \in \Omega_{\Psi_{2}}, i=2,3,4,5 \tag{3.26}
\end{equation*}
$$

and inverse matrices $L_{i}^{-1}\left(z_{2}\right)(i=2,3,4,5)$ for the corresponding values of $z_{2} \in \Omega_{\Psi_{2}}$ exist Consequently, transformations (3.7), (3.10) and (3.12) are uniquely solvable for $z_{3}, z_{4}$ and $u$, respectively, that is, they have inverses, of the form

$$
\begin{equation*}
z_{i}=\Phi_{i}\left(x_{2}^{\prime}\right), \quad i=3,4 \tag{3.27}
\end{equation*}
$$

where

$$
\begin{gather*}
\boldsymbol{\Phi}_{i}\left(x_{2}^{i}\right)=M_{i}\left(x_{2}^{i-1}\right)+N_{i}\left(x_{2}\right) x_{i}, i=3,4  \tag{3.28}\\
M_{i}\left(x_{2}^{i-1}\right)=-L_{i}^{-1}\left(\boldsymbol{\Phi}_{2}\left(x_{2}\right)\right) K_{i}\left(\boldsymbol{\Phi}_{2}^{i-1}\left(x_{2}^{i-1}\right)\right)  \tag{3.29}\\
N_{i}\left(x_{2}\right)=L_{i}^{-1}\left(\boldsymbol{\Phi}_{2}\left(x_{2}\right)\right)=D_{i-1}^{-1} L_{i-1}^{-1}\left(\Phi_{2}\left(x_{2}\right)\right), i=3,4 \\
L_{2}^{-1}\left(\Phi_{2}\left(x_{2}\right)\right)=L_{2 x}\left(x_{2}\right)=\left\|l_{2 x i j}\left(x_{2}\right)\right\|_{i, j=1,2}, l_{2 \times 1 j}\left(x_{2}\right)=  \tag{3.30}\\
=x_{2 j} / \boldsymbol{\Phi}_{21}\left(x_{2}\right), l_{2 \times 2 j}\left(x_{2}\right)=(-1)^{j} x_{2,3-j} /\left[\boldsymbol{\Phi}_{21}\left(x_{2}\right)\right]^{2}, j=1,2 \\
\boldsymbol{\Phi}_{2}^{i-1}\left(x_{2}^{i-1}\right)=\operatorname{col}\left(\Phi_{2}\left(x_{2}\right), \Phi_{3}\left(x_{2}^{3}\right), \ldots, \boldsymbol{\Phi}_{i-1}\left(x_{2}^{i-1}\right)\right)
\end{gather*}
$$

$$
\begin{gather*}
u=\Phi_{5}\left(x_{2}^{4}, w\right)  \tag{3.31}\\
\Phi_{5}\left(x_{2}^{4}, w\right)=M_{5}\left(x_{2}^{4}\right)+N_{5}\left(x_{2}\right) w  \tag{3.32}\\
M_{5}\left(x_{2}^{4}\right)=-L_{5}^{-1}\left(\Phi_{2}\left(x_{2}\right)\right) K_{5}\left(\Phi_{2}^{4}\left(x_{2}^{4}\right)\right), N_{5}\left(x_{2}\right)=L_{5}^{-1}\left(\Phi_{2}\left(x_{2}\right)\right) \tag{3.33}
\end{gather*}
$$

Thus, taking Eqs (3.14), (3.21)-(3.30) into account, we have constructed the one-to-one inverse of the initial transformation (3.1), (3.4), (3.6)-(3.11)

$$
\begin{equation*}
z=\Phi(x), x \in \Omega_{\Phi} \tag{3.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(x)=\operatorname{col}\left(\Phi_{1}\left(x_{1}\right), \Phi_{2}\left(x_{2}\right), \Phi_{3}\left(x_{2}^{3}\right), \Phi_{4}\left(x_{2}^{4}\right)\right) \tag{3.35}
\end{equation*}
$$

$\Phi_{i}(i=1, \ldots, 4)$ are the vector functions (3.14), (3.21)-(3.30), and

$$
\begin{gather*}
\Omega_{\Phi}=\left\{x \in R^{8}: z=\Phi(x) \in \Omega_{\Psi}\right\}  \tag{3.36}\\
\Omega_{\Psi}=\left\{z=\operatorname{col}\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in R^{8}: z_{i} \in R^{2}, i=1,3,4 ; z_{2} \in \Omega_{\Psi_{2}}\right\} \tag{3.37}
\end{gather*}
$$

We will now show that, if one takes any solution $x_{1}(t)$ of the ODE

$$
\begin{equation*}
x_{1}^{(4)}=\Psi_{5}\left(\Phi_{2}^{4}\left(\dot{x}_{1}, x_{1}^{(2)}, x_{1}^{(3)}\right), u\right) \tag{3.38}
\end{equation*}
$$

which is equivalent to system (2.1)-(2.3) for $w=\Psi_{5}\left(\Phi_{2}^{4}\left(x_{1}, x_{1}^{(2)}, x_{1}^{(3)}\right), u\right)$, where $x_{2}^{4}=\operatorname{col}\left(x_{2}, x_{3}, x_{4}\right)=$ $\operatorname{col}\left(x_{1}, x_{1}^{(2)}, x_{1}^{(3)}\right)$, substitutes it into system (3.5)

$$
\begin{equation*}
x_{1}^{(i)}=\dot{x}_{i}=\dot{\Psi}_{i}\left(z_{2}^{i}\right)=\Psi_{i+1}\left(z_{2}^{i+1}\right)=x_{i+1}, \quad i=1,2,3 \tag{3.39}
\end{equation*}
$$

where $z_{2}^{1}=z_{2}$, and uses this system to define the vector functions $z_{i}(t)(i=2,3,4)$, then the system of vector functions

$$
\begin{equation*}
x_{1}(t)=z_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t) \tag{3.40}
\end{equation*}
$$

will be a solution of system (1.11)-(1.13), (1.10).
Substituting the system of vector functions (3.40) into system (1.11)-(1.13), (1.10), all the equations of the latter become identities; in particular, we obtain the identity

$$
\begin{equation*}
\dot{x}_{1}=\dot{z}_{1} \equiv F_{1}\left(z_{2}\right) \tag{3.41}
\end{equation*}
$$

Differentiating this identity with respect to $t$, we obtain

$$
\begin{equation*}
\ddot{x}_{1}=\ddot{z}_{1}=\dot{x}_{2}=\dot{\Psi}_{2}\left(z_{2}\right)=\frac{\partial \Psi_{2}\left(z_{2}\right)}{\partial z_{2}} \dot{z}_{2} \tag{3.42}
\end{equation*}
$$

It is not yet possible to replace $\dot{z}_{2}$ by the vector function $F_{2}$, since we have not yet shown that the vector functions $x_{1}(t), z_{2}(t), z_{3}(t), z_{4}(t)$ (3.40) derived in this way from Eq. (3.38) and system (3.39) indeed satisfy the initial system of equations (1.11)-(1.13), (1.10); indeed, that is just what has to be proved.
Subtracting identity (3.7) term by term from (3.42), we obtain

$$
\begin{equation*}
\frac{\partial \Psi_{2}\left(z_{2}\right)}{\partial z_{2}}\left(\dot{z}_{2}-F_{2}\left(z_{2}^{3}\right)\right) \equiv 0 \tag{3.43}
\end{equation*}
$$

Similarly, differentiating the identities $x_{i}=\Psi_{i}\left(z_{2}\right)(i=3,4)(3.39)$ with respect to $t$

$$
\dot{x}_{i}=\dot{\Psi}_{i}\left(z_{2}^{i}\right)=\sum_{k=2}^{i} \frac{\partial \Psi_{i}\left(z_{2}^{i}\right)}{\partial z_{k}} \dot{z}_{k}, i=3,4
$$

and subtracting the identities

$$
\dot{x}_{i}=\dot{\Psi}_{i}\left(z_{2}^{i}\right)=\sum_{k=2}^{i} \frac{\partial \Psi_{i}\left(z_{2}^{i}\right)}{\partial z_{k}} F_{k}\left(z_{2}^{k+1}\right), \quad i=3,4
$$

from (3.10) and (3.12), respectively, we obtain

$$
\begin{equation*}
\sum_{k=2}^{i} \frac{\partial \Psi_{i}\left(z_{2}^{i}\right)}{\partial z_{k}}\left(i_{k}-F_{k}\left(z_{2}^{k+1}\right)\right) \equiv 0, \quad i=3,4 \tag{3.44}
\end{equation*}
$$

Equations (3.43) and (3.44) may be written as a system of equations in the unknowns $\left(z_{k}-F_{k}\left(z_{2}^{k+1}\right)\right.$ ) ( $k=2,3,4$ )

$$
\begin{equation*}
J_{0}\left(z_{2}^{3}\right)\left(\dot{z}_{2}^{4}-F_{2}^{4}\left(z_{2}^{5}\right)\right)=0 \tag{3.45}
\end{equation*}
$$

where $z_{2}^{5}=\operatorname{col}\left(z_{2}, \ldots, z_{5}\right), z_{5}=u, F_{2}^{4}\left(z_{2}^{5}\right)=\operatorname{col}\left(F_{2}\left(z_{2}^{3}\right), F_{3}\left(z_{2}^{4}\right), F_{4}\left(z_{2}^{5}\right)\right)$

$$
\begin{equation*}
J_{0}\left(z_{2}^{3}\right)=\frac{\partial \Psi_{2}^{4}\left(z_{2}^{4}\right)}{\partial z_{2}^{4}} \tag{3.46}
\end{equation*}
$$

is the $6 \times 6 \mathrm{Jacobian}$ and $\Psi_{2}^{4}\left(z_{2}^{4}\right)=\operatorname{col}\left(\Psi\left(z_{2}\right), \Psi_{3}\left(z_{2}^{3}\right), \Psi_{4}\left(z_{2}^{4}\right)\right)$.
Taking relations (3.6)-(3.11) into consideration, we conclude that the matrix function $J_{0}$ (3.46) is a lower block-diagonal matrix with diagonal $2 \times 2$ blocks $L_{i}(i=2,3,4)(3.8)$, (3.9), (3.11), which, by (3.26), are non-singular. Therefore

$$
\begin{equation*}
\operatorname{rank} J_{0}\left(z_{2}^{3}\right)=6, \forall z_{2}^{3} \in \Omega_{J 0} \tag{3.47}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{j 0}=\left\{z_{2}^{3}=\operatorname{col}\left(z_{2}, z_{3}\right) \in R^{4}: z_{2} \in \Omega_{\Psi_{2}}, z_{3} \in R^{2}\right\} \tag{3.48}
\end{equation*}
$$

and, consequently, taking note of (3.47), we conclude that the matrix function $J_{0}$ (3.46) is also non-singular. Hence, it follows that at each point of the set $\Omega_{j 0}$ (3.48), system (3.45) has only the trivial solution

$$
z_{2}^{4}-F_{2}^{4}\left(z_{2}^{5}\right)=0
$$

Bearing identity (3.41) in mind, we conclude that the vector function $y=\operatorname{col}\left(x_{1}, z_{2}, z_{3}, z_{4}\right)=z$ is a solution of the initial system of equations (1.11)-(1.13), (1.10).

## 4. CONTROLLABILITY AND AN ALGORITHM FOR CONSTRUCTING A PM OF THE TR

We will first show that the model of the TR's motion in canonical form (2.1)-(2.3) is completely controllable [6, p. 269]. Since the matrix

$$
\begin{equation*}
S=\left\|Q, P Q, \ldots, P^{7} Q\right\| \tag{4.1}
\end{equation*}
$$

has a submatrix $S_{0}=\left\|Q, P Q, P^{2} Q, P^{3} Q\right\|$, such that, by (2.3), $\left|\operatorname{det} S_{0}\right|=1$ and consequently

$$
\begin{equation*}
\operatorname{rank} S=\operatorname{rank} S_{0}=8 \tag{4.2}
\end{equation*}
$$

it follows that system (2.1)-(2.3) is completely controllable [6, p. 269, Theorem 3.1], i.e., a control law

$$
\begin{equation*}
w=w_{p}=w_{p}(t)=Q^{*} e^{P^{*}\left(t_{1}-t\right)} K_{0}^{-1}\left(x_{p 1}-e^{P T} x_{p 0}\right) \tag{4.3}
\end{equation*}
$$

exists where

$$
\begin{equation*}
K_{0}=\int_{t_{0}}^{t_{0}} e^{P\left(t_{1}-t\right)} Q Q^{*} e^{P^{*}\left(t_{1}-t\right)} d t \tag{4.4}
\end{equation*}
$$

is a constant positive definite $8 \times 8$ matrix by virtue of the complete controllability of system (2.1)-(2.3) [6], which steers system (2.1)-(2.3) from any initial state $x_{p}\left(t_{0}\right)=x_{p 0}=\Psi\left(z_{p 0}\right) \in R^{8}$ (in particular, for $z_{p 0} \in \Omega_{\psi}$, where $\Omega_{\Psi}$ is set (3.37)) to an arbitrary terminal state $x_{p}\left(t_{1}\right)=x_{p 1}=\Psi\left(z_{p 1}\right) \in R^{8}$ (in particular, for $z_{p 1} \in \Omega_{\Psi}$ ) in time $t_{1}-t_{0}<\infty$ along a trajectory

$$
\begin{equation*}
x_{p}=x_{p}(t)=e^{P\left(t-t_{0}\right)} x_{p 0}+\int_{t_{0}}^{t} e^{P(t-s)} Q w_{p}(s) d s, t \in\left[t_{0}, t_{1}\right] \tag{4.5}
\end{equation*}
$$

Note that in order to compute $e^{P\left(l-t_{0}\right)}, e^{P(t-s)}, e^{P\left(t_{1}-1\right)}, e^{P T}$ where $P$ is matrix (2.3), one can use the representation of $e^{P T}$ as

$$
e^{P_{\tau}}=\sum_{i=0}^{3} \frac{P^{i} \tau^{i}}{i!}
$$

Hence, using transformations (3.6) and (3.8)-(3.10), we conclude that the control law

$$
\begin{equation*}
u=u_{p}=\Phi_{S}\left(x_{p 2}^{4}, w_{p}\right)=\Phi_{S}\left(\Psi_{2}^{4}\left(z_{p 2}^{4}\right), w_{p}\right) \tag{4.6}
\end{equation*}
$$

where $\Psi_{2}^{4}\left(z_{p 2}^{4}\right)=\operatorname{col}\left(\Psi_{2}\left(z_{p 2}\right), \Psi_{3}\left(z_{p 2}^{3}\right), \Psi_{4}\left(z_{p 2}^{4}\right)\right)$, and $w_{p}$ and $x_{p}$ are defined by (4.3)-(4.5), steers the initial model of the motion of the TR (1.11)-(1.13) from any initial state $z_{p}\left(t_{0}\right)=z_{p 0} \in \Omega_{\Psi}$ to an arbitrary terminal state $z_{p}\left(t_{1}\right)=z_{p 1} \in \Omega_{\Psi}$, where $\Omega_{\Psi}$ is set (3.37), in time $t_{1}-t_{0}<\infty$ along a trajectory

$$
\begin{equation*}
z=z_{p}=\Phi\left(x_{p}\right) t \in\left[t_{0}, t_{1}\right] \tag{4.7}
\end{equation*}
$$

Therefore, the initial model (1.11)-(1.13), (1.10) for the TR's motion is also controllable.

## 5. STABILIZABILITY CRITERIA FOR A PM OF THE TR

We will first consider the problem of synthesizing stabilizing control laws $w$ and analysing the stability of a PM $x_{p}(t)$ in the set $\Omega_{\Phi}(3.36), t \geqslant t_{0}$, for the canonical model (2.1)-(2.3) of the TR's motion.
The fact that this model is completely controllable (i.e., that relations (4.2) and (4.3) are satisfied) implies [ 6, p. 274, Theorem 4.1] that a constant $2 \times 8$ matrix of amplification factors

$$
\begin{equation*}
\Gamma_{0}=\left\|\Gamma_{01}, \ldots, \Gamma_{04}\right\| \tag{5.1}
\end{equation*}
$$

exists where $\Gamma_{0 j}(j=1, \ldots, 4)$ are $2 \times 2$ blocks, such that the matrix

$$
\begin{equation*}
\Gamma=P+Q \Gamma_{0} \tag{5.2}
\end{equation*}
$$

has given eigenvalues $\lambda_{i}(i=1, \ldots, 8)$, in particular, for example, such that the matrix $\Gamma$ is stable (Hurwitzian) [16, p. 597], that is, $\operatorname{Re} \lambda_{i}<0(i=1, \ldots, 8)$. In addition, the matrix $\Gamma_{0}(5.1)$ may be chosen so that the matrix $\Gamma$ (5.2) has, say, given distinct, real, negative eigenvalues, that is

$$
\begin{equation*}
\lambda_{i}<0 \quad\left(\lambda_{i} \neq \lambda_{j}, i \neq j ; i=1, \ldots, 8 ; j=1, \ldots, 8\right) \tag{5.3}
\end{equation*}
$$

We will synthesize a control law with "canonical" feedback with respect to $x$, in the form

$$
\begin{equation*}
w=w_{p}+\Gamma_{0}\left(x-x_{p}\right) \tag{5.4}
\end{equation*}
$$

Then the equation of the transients $e_{x}=x-x_{p}$ in the closed system (2.1)-(2.3), (5.4), (5.3) will have the form

$$
\begin{equation*}
\dot{e}_{x}=\Gamma e_{x}, \quad e_{x}\left(t_{0}\right)=e_{x 0}, \quad t \geqslant t_{0} \tag{5.5}
\end{equation*}
$$

Consequently, a PM $x_{p}(t)$ (4.5) of system (2.1)-(2.3), (5.4), (5.1)-(5.3) is asymptotically stable in the large, with an estimate

$$
\begin{equation*}
\left|e_{x}(t)\right| \leqslant \beta_{0}\left|e_{x}\left(t_{0}\right)\right| \exp \left[\gamma_{0}\left(t-t_{0}\right)\right], \quad e_{x}\left(t_{0}\right)=e_{x 0}, \quad t \geqslant t_{0} \tag{5.6}
\end{equation*}
$$

and the damping of the transient $e_{x}(t)$ will be of a given aperiodic nature (in particular, for $e_{x 0}$ such that $\left.e_{x 0}+x_{p 0}=x_{0}=x\left(t_{0}\right) \in \Omega_{\Phi}\right)$, where

$$
\begin{aligned}
& \gamma_{0}=\max _{i} \lambda_{i}, \quad \lambda_{i}<0 \quad(i=1, \ldots, 8) ; \quad \beta_{0}=\sum_{i=1}^{8}\left|\bar{\Gamma}_{i}\right|>0 \\
& \bar{\Gamma}_{i}=\left[\prod_{\substack{k=1 \\
k \neq i}}^{8}\left(\Gamma-\lambda_{k} I_{8}\right)\right]\left[\prod_{\substack{k=1 \\
k \neq i}}^{8}\left(\lambda_{i}-\lambda_{k}\right)\right]^{-1} \quad(i=1, \ldots, 8)
\end{aligned}
$$

are the coefficient matrices of the Lagrange-Sylvester interpolation polynomial [7, p. 49]

$$
e^{\Gamma\left(t-t_{0}\right)}=\sum_{i=1}^{8} \bar{\Gamma}_{i} \exp \left[\lambda_{i}\left(t-t_{0}\right)\right]
$$

and

$$
|a|=\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)^{1 / 2} \text { and }|A|=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}
$$

are the Euclidean norms (moduli) of the vector $a=\operatorname{col}\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ and $n \times n$ matrix

$$
A=\left\|a_{i j}\right\|_{i, j=1, \ldots, n} .
$$

Substituting relations (5.4), (5.1)-(5.3) into (3.31) and using the coordinate transformations of the state space (3.3)-(3.4), (3.6)-(3.11), we obtain the desired stabilizing control law with feedback with respect to $z$

$$
\begin{align*}
& u=\operatorname{col}\left(u_{1}, u_{2}\right)=\Phi_{5}\left(x_{2}^{4}, w_{p}+\Gamma_{0}\left(x-x_{p}\right)\right)= \\
& =\Phi_{5}\left(\Psi_{2}^{4}\left(z_{2}^{4}\right), w_{p}+\Gamma_{0}\left(\Psi(z)-\Psi\left(z_{p}\right)\right)\right)=\operatorname{col}\left(\bar{\Phi}_{51}\left(\Gamma_{0}, t, z\right), \Phi_{52}\left(\Gamma_{0}, t, z\right)\right)  \tag{5.7}\\
& \left(u_{i}=\bar{\Phi}_{5 i}\left(\Gamma_{0}, t, z\right)=h_{i}^{*} \Phi_{5}\left(\Psi_{2}^{4}\left(z_{2}^{4}\right), w_{p}+\Gamma_{0}\left(\Psi(z)-\Psi\left(z_{p}\right)\right)\right), \quad i=1,2\right)
\end{align*}
$$

where $h_{1}=\operatorname{col}(1,0), h_{2}=\operatorname{col}(0,1)$ are two-dimensional vectors, for the initial model of the TR's motion (1.11)-(1.13).

The equation of the transient $e=z-z_{p}$ in the initial closed model of the motion of the TR (1.11)-(1.13), (5.7), (5.1)-(5.3) has the form

$$
\begin{equation*}
\dot{e}=F_{e}(e, t), \quad e\left(t_{0}\right)=e_{0}, \quad t \geqslant t_{0} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{e}(e, t)=F\left(e+z_{p}, \Phi_{5}\left(\Psi_{2}^{4}\left(e_{2}^{4}+z_{p 2}^{4}\right), w_{p}+\Gamma_{0}\left(\Psi\left(e+z_{p}\right)-\Psi\left(z_{p}\right)\right)\right)\right)-F\left(z_{p}, u_{p}\right)  \tag{5.9}\\
& F_{e}(0, t) \equiv 0, \quad e_{0}+z_{p 0}=z_{0} \in \Omega_{\Psi}
\end{align*}
$$

Let us estimate the transient $e$ in (5.8) and (5.9). We will assume that

$$
\begin{equation*}
z_{p}(t) \in \Omega_{z p}, \quad t \geqslant t_{0} \tag{5.10}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega_{z p}=\left\{z_{p}=\operatorname{col}\left(z_{p 1}, z_{p 2}, z_{p 3}, z_{p 4}\right) \in \Omega_{\psi}: k_{z p i k}=\right. \\
& \left.=\sup _{1 \geqslant 1_{0}}\left|z_{p i k}(t)\right|<\infty \quad(i=3,4 ; k=1,2)\right\} \tag{5.11}
\end{align*}
$$

$\Omega_{\psi}$ is set (3.37) and $k_{z p i k}(i=3,4 ; k=1,2)$ are certain constants.
Using the formulae for finite increments of vector functions [8, p. 122, Lemma 3.1], relations (5.10), (5.11), (3.36), (3.37), (3.20) and (3.25), the inequality $a^{2}+b^{2} \geqslant 2^{a b}$ and the estimates

$$
|a| \leqslant \sum_{i=1}^{n}\left|a_{i}\right|, \quad|A| \leqslant \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|
$$

for the moduli of the vector $a \in R^{n}$ and the $n \times m$ matrix A, one can show successively (see the Appendix) that the moduli $\left|e_{i}\right|(i=1,2,3,4)$ of the subvectors $e_{i}(t)(i=1,2,3,4)$ of the vector $e=z(t)-z p(t)$ $=\operatorname{col}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ satisfy estimates (6.1), (6.2), (6.17) and (6.25), respectively, that is

$$
\begin{gather*}
\left|e_{1}(t)\right|=\left|z_{1}(t)-z_{p 1}(t)\right|=\left|e_{x 1}(t)\right|=\left|x_{1}(t)-x_{p 1}(t)\right|  \tag{5.12}\\
\left|e_{2}(t)\right|=\left|z_{2}(t)-z_{p 2}(t)\right| \leqslant v_{2}\left|e_{x 2}(t)\right|, t \geqslant t_{0} \tag{5.13}
\end{gather*}
$$

where

$$
\begin{gather*}
v_{2}=\left(\rho^{2}+\varepsilon_{V}^{-2}\right)^{1 / 2}>0, \rho=1, \\
\left|e_{3}(t)\right| \leqslant v_{3}\left(\left|e_{x 2}(t)\right|+\left|e_{x 3}(t)\right|\right), t \geqslant t_{0}  \tag{5.14}\\
\left|e_{4}(t)\right| \leqslant v_{4}\left(\left|e_{x 2}\right|+\left|e_{x 3}\right|+\left|e_{x 4}\right|+\left|e_{x 2}\right|^{2}+\left|e_{x 3}\right|^{2}\right), t \geqslant t_{0} \tag{5.15}
\end{gather*}
$$

Here $\nu_{3}$ and $\nu_{4}$ are certain constants, which will be defined in (6.18) and (6.26).
We now estimate $|e(t)|=\left|z(t)-z_{p}(t)\right|$, using estimates (5.12)-(5.15) for the vectors $e_{i}(t)=z_{i}(t)-$ $z_{p i}(t)(i=2,3,4)$. We obtain

$$
\begin{align*}
& |e(t)|=\left|\Delta_{\Phi}\left(e_{x}, t\right)\right|=\left|\Phi\left(e_{x}+x_{p}\right)-\Phi\left(x_{p}\right)\right| \leqslant \\
& \leqslant \sum_{i=1}^{4}\left|e_{i}(t)\right| \leqslant\left|e_{x 1}(t)\right|+v_{2}\left|e_{x 2}(t)\right|+v_{3}\left(\left|e_{x 2}(t)\right|+\left|e_{x 3}(t)\right|\right)+ \\
& +v_{4}\left(\left|e_{x 2}\right|+\left|e_{x 3}\right|+\left|e_{x 4}\right|+\left|e_{x 2}\right|^{2}+\left|e_{x 3}\right|^{2}\right) \leqslant \Delta \Phi_{0}\left(e_{x}\right)= \\
& =\left[\int_{0}^{1} J_{\Delta \Phi 0}\left(\theta e_{x}\right) d \theta\right] e_{x} \leqslant\left|\left[\int_{0}^{1}\left|J_{\Delta \Phi 0}\left(\theta e_{x}\right)\right| d \theta\right]\right|\left|e_{x}\right| \leqslant \mu_{0}\left|e_{x}(t)\right|= \\
& =\mu_{0} \beta_{0}\left|e_{x}\left(t_{0}\right)\right| \exp \left[\gamma_{0}\left(t-t_{0}\right)\right]=\mu\left|\Delta \Psi\left(e_{0}, t_{0}\right)\right| \exp \left[\gamma_{0}\left(t-t_{0}\right)\right] \\
& e_{0}+z_{p 0}=z_{0} \in \Omega_{\Psi}, t \geqslant t_{0} \tag{5.16}
\end{align*}
$$

where

$$
\begin{align*}
& \Delta \Phi_{0}\left(e_{x}\right)=v_{01}\left|e_{x}\right|+v_{4}\left(\left|e_{x 2}\right|^{2}+\left|e_{x 3}\right|^{2}\right) \\
& v_{01}=4 \max \left\{1, v_{2}+v_{3}+v_{4}, v_{3}+v_{4}, v_{4}\right\} \tag{5.17}
\end{align*}
$$

$$
\begin{align*}
& J_{\Delta \Phi 0}\left(e_{x}\right)=\frac{\partial \Delta \Phi_{0}\left(e_{x}\right)}{\partial e_{x}}=\left.\left|v_{01}\right| e_{x}\right|^{-1 / 2} e_{x 1},\left(v_{01}\left|e_{x}\right|^{-1 / 2}+2 v_{4}\right) e_{x 2} \\
& \left(v_{01}\left|e_{x}\right|^{-1 / 2}+2 v_{4}\right) e_{x 3}, \quad v_{01}\left|e_{x}\right|^{-1 / 2} e_{x 4} \|  \tag{5.18}\\
& \sup _{\bar{e}_{x} \in\left[0, e_{x}\right], r \geqslant t_{0}}\left|J_{\Delta \Phi 0}\left(\tilde{e}_{x}\right)\right| \leqslant v_{01}+2 v_{4} \sum_{i=2}^{3}\left|e_{x i}\right|=\mu_{0}, \quad \mu=\mu_{0} \beta_{0}  \tag{5.19}\\
& {\left[0, e_{x}\right]=\left\{\bar{e}_{x} \mid \bar{e}_{x}=\theta e_{x}, \quad e_{x}+x_{p}=x \in \Omega_{\Phi}, 0 \leqslant \theta \leqslant 1\right\}}
\end{align*}
$$

$\bar{e}_{x}=\operatorname{col}\left(\bar{e}_{x 1}, \ldots, \bar{e}_{x 4}\right) ; \bar{e}_{x i}(i=1, \ldots, 4)$ are two-dimensional vectors and $\Delta \Psi\left(e_{0}, t_{0}\right)=\Psi\left(e_{0}+z_{p 0}\right)-$ $\Psi\left(z_{p 0}\right)$.

If follows from (5.16) and (5.17) that

$$
\begin{equation*}
|e(t)|=\left|\Delta \Phi\left(e_{x}, t\right)\right| \leqslant \Delta \Phi_{0}\left(e_{x}\right)=v_{01}\left|e_{x}\right|+v_{4}\left(\left|e_{x 2}\right|^{2}+\left|e_{x 3}\right|^{2}\right), \tag{5.20}
\end{equation*}
$$

from which it follows that the vector function $\Delta \Phi\left(e_{x}, t\right)$ is continuous with respect to $e_{x}$ at $e_{x}=0$, uniformly in $t \in\left[t_{0}, \infty\right]$, and moreover $\Delta \Phi(0, t)=0$.

It follows from (5.16)-(5.19), (5.6), (5.3) that

$$
\begin{equation*}
|e(t)| \rightarrow 0 \text { as } t \rightarrow+\infty \tag{5.21}
\end{equation*}
$$

We will show that Lyapunov stability of the solution $e_{x}=0$ of system (5.5), (5.1)-(5.3) implies Lyapunov stability of the solution $e=0$ of system (5.9), (5.1)-(5.3).

Take any $\varepsilon>0$. Since the vector function $\Delta \Phi\left(e_{x}, t\right)=\Phi\left(e_{x}+x_{p 0}(t)-\Phi\left(x_{p}(t)\right)\right.$ is continuous with respect to $e_{x}$ at $e_{x}=0$, uniformly in $t \in\left[t_{0}, \infty\right]$, it follows that, given $\varepsilon>0$, one can find $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left|e_{x}\right|<\varepsilon_{0} \Rightarrow|e|=\left|\Delta \Phi\left(e_{x}, t\right)\right|<\varepsilon \tag{5.22}
\end{equation*}
$$

where $e_{x}=e_{x}\left(e_{x} 0, t\right) e=e_{x}\left(e_{0}, t\right)$.
Since the solution $e_{x}=0$ of system (5.5), (5.1)-(5.3) is Lyapunov stable, it follows that, given $\varepsilon_{0}>0$, one can find $\delta_{0}>0$ such that

$$
\begin{equation*}
\left|e_{x 0}\right|<\delta_{0} \Rightarrow\left|e_{x}\left(e_{x 0}, t\right)\right|<\varepsilon_{0}, \quad t \in\left[t_{0}, \infty\right) \tag{5.23}
\end{equation*}
$$

Consider the vector function

$$
\Delta \Psi(e, t)=\Psi\left(e+z_{p}(t)\right)-\Psi\left(z_{p}(t)\right)
$$

where $\Psi$ is the vector function (3.3), (3.4), (3.6)-(3.11). Using the continuity with respect to $e$ at $e=0$ of the vector function $\Delta \Psi\left(e, t_{0}\right)$, given $\delta_{0}>0$, one can find $\delta>0$ such that

$$
\begin{equation*}
\left|e_{0}\right|<\delta \Rightarrow\left|e_{x 0}\right|=\left|\Delta \Psi\left(e_{0}, t_{0}\right)\right|<\delta_{0} \tag{5.24}
\end{equation*}
$$

Taking inequalities (5.22)-(5.24) into consideration, we obtain

$$
\left|e_{0}\right|<\delta \Rightarrow\left|e_{x 0}\right|<\delta_{0} \Rightarrow\left|e_{x}\left(e_{x, 0}, t\right)\right|<\varepsilon_{0} \Rightarrow\left|e\left(e_{0}, t\right)\right|<\varepsilon, \quad t \geqslant t_{0}
$$

Consequently, it follows from the Lyapunov stability of the trivial solution of system (5.5), (5.1)-(5.3) that the trivial solution of system (5.8), (5.9), (5.1)-(5.3) is also Lyapunov stable.

We have thus shown the following.
Theorem. Let $z_{p}(t)$ be a given (or constructed) PM $\left.(5.10), 5.11\right)$ of the initial model of TR motion (1.11)-(1.13), (1.10). Then the stabilizing control Law $u$ (5.7), (5.1)-(5.3) with feedback with respect to $z$ guarantecs asymptotic stability of the $\mathrm{PM} z_{p}(t)$ (5.10), (5.11), and the transient $e(t)=z(t)-z_{p}(t)$ in the closed initial model of TR motion (1.11)-(1.13), (5.7), (5.1)-(5.3) satisfies estimate (5.16)-(5.19). Note that, substituting the control law $u$ (5.7), (5.1)-(5.3) into (1.17) and using estimates (5.16)-(5.19) for $e=z-z_{p}$, that follow from the theorem proved above, we obtain stabilizing laws for the variation of the control voltages

$$
\begin{align*}
& u_{a j}=u_{a j}(t)=L_{a j} a_{j 1} \int_{t_{0}}^{\prime} \bar{\Phi}_{51}\left(\Gamma_{0}, \tau, z\right) d \tau+ \\
& +L_{a j} a_{j 2} \bar{\Phi}_{52}\left(\Gamma_{0}, t, z\right), \quad t \geqslant t_{0}, \quad j=1,2 \tag{5.25}
\end{align*}
$$

applied to the armature circuits of the DCMs, such that the PM

$$
\bar{z}_{p}=H_{2} z_{p}
$$

where $H_{2}$ is the matrix defined by transformation (1.16) of the initial equations of motion of the TR (1.5), (1.6), is asymptotically stable; the transient

$$
\bar{e}=\bar{z}-\bar{z}_{p}=H_{2}\left(z-z_{p}\right)=H_{2} e
$$

satisfies an estimate

$$
|\bar{e}| \leqslant\left|H_{2}\right||e| \leqslant \bar{\mu}\left|\Delta \Psi\left(e_{0}, t_{0}\right)\right| \exp \left[\gamma_{0}\left(t-t_{0}\right)\right], \quad e_{0}+z_{p 0}=z_{0} \in \Omega_{\Psi}, \quad t \geqslant t_{0}
$$

where

$$
\bar{\mu}=\left|H_{2}\right| \mu, \quad e_{0}=H_{1} \bar{e}_{0}+H_{0}\left(u_{a 0}-u_{a p 0}\right)=H_{1} \bar{e}_{0}+H_{0}\left(u_{a 0}-L_{a} A \bar{u}_{a p 0}\right)
$$

$u_{a 0}=u_{a}(0), u_{a p 0}=u_{a p}(0), \bar{u}_{a p 0}=\bar{u}_{a p}(0)$. The matrices $H_{1}$ and $H_{0}$ are defined by transformation (1.15).

## 6. APPENDIX

We will successively estimate the moduli $\left|e_{i}\right|(i=1,2,3,4)$ of the subvectors $e_{i}(t)$ of the vector $e=z(t)-z_{p}(t)=\operatorname{col}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$. We have

$$
\begin{equation*}
\left|e_{1}(t)\right|=\left|z_{1}(t)-z_{p 1}(t)\right|=\left|e_{x 1}(t)\right|=\left|x_{1}(t)-x_{p 1}(t)\right| \tag{6.1}
\end{equation*}
$$

Using the formula for finite increments of a vector-valued function

$$
\Delta \Phi_{2}\left(e_{x 2}, t\right)=\Phi_{2}\left(e_{x 2}+x_{p 2}\right)-\Phi_{2}\left(x_{p 2}\right)
$$

We obtain [8, p. 122, Lemma 3.1]

$$
\begin{align*}
& \left|e_{2}(t)\right|=\left|z_{2}(t)-z_{p 2}(t)\right|=\left|\Delta \Phi_{2}\left(e_{x 2}, t\right)\right|= \\
& =\left|\Phi_{2}\left(e_{x 2}+x_{p 2}\right)-\Phi_{2}\left(x_{p 2}\right)\right|=\left|\operatorname{col}\left(\Delta \Phi_{21}\left(e_{x 2}, t\right), \Delta \Phi_{22}\left(e_{x 2}, t\right)\right)\right|= \\
& =\left|\left[\int_{0}^{1} J_{\Delta \Phi_{2}}\left(\theta e_{x 2}(t), t\right) d \theta\right] e_{x 2}(t)\right| \leqslant v_{2}\left|e_{x 2}(t)\right|, t \geqslant t_{0} \tag{6.2}
\end{align*}
$$

Here, taking note of relations (3.23)-(3.26) and (3.30), we have

$$
\begin{align*}
& \Delta \Phi_{21}\left(e_{x 2}, t\right)=\Phi_{21}\left(e_{x 2}+x_{p 2}\right)-\Phi_{21}\left(x_{p 2}\right)= \\
& =\rho\left\{\left[\left(e_{x 21}+x_{p 21}\right)^{2}+\left(e_{x 22}+x_{p 22}\right)^{2}\right]^{1 / 2}-\left[x_{p 21}^{2}+x_{p 22}^{2}\right]^{1 / 2}\right\} \text {, } \\
& \rho=1, \quad e_{x 2}+x_{p 2}=x_{2} \in \Omega_{\Phi_{2}}  \tag{6.3}\\
& \Delta \Phi_{22}\left(e_{x 2}, t\right)=\Phi_{22}\left(e_{x 2}+x_{p 2}\right)-\Phi_{22}\left(x_{p 2}\right)= \\
& =\operatorname{arctg} \frac{e_{x 22}+x_{p 22}}{e_{x 21}+x_{p 21}}-\operatorname{arctg} \frac{x_{p 22}}{x_{p 21}}, \quad e_{x 2}+x_{p 2}=x_{2} \in \Omega_{\Phi_{2}}  \tag{6.4}\\
& J_{\Delta \Phi_{2}}\left(e_{x 2}, t\right)=\frac{\partial \Delta \Phi_{2}\left(e_{x 2}, t\right)}{\partial e_{x 2}}=\left\|\begin{array}{ll}
\rho l_{2 \times 11}\left(x_{2}\right) & \rho l_{2 \times 12}\left(x_{2}\right) \\
l_{2 \times 21}\left(x_{2}\right) & l_{2 \times 22}\left(x_{2}\right)
\end{array}\right\|= \\
& =\left\|\begin{array}{ll}
\rho \cos z_{22} & \rho \sin z_{22} \\
-\frac{\sin z_{22}}{z_{21}} & \frac{\cos z_{22}}{z_{21}}
\end{array}\right\|, \rho=1 \tag{6.5}
\end{align*}
$$

where

$$
\begin{align*}
& \sup _{\bar{e}_{x 2} \in\left[0, e_{x 2}\right], 1 \geqslant\left.\right|_{1}}\left|J_{\Delta \Phi_{2}}\left(\bar{e}_{x 2}, t\right)\right| \leqslant v_{2}  \tag{6.6}\\
& {\left[0, e_{x 2}\right]=\left\{\bar{e}_{x 2} \mid e_{x 2}=\theta e_{x 2}, e_{x 2}+x_{p 2}=x_{2} \in \Omega_{\Phi_{2}}, 0 \leqslant \theta \leqslant 1\right\}} \\
& v_{2}=\left(\rho^{2}+\varepsilon_{v}^{-2}\right)^{1 / 2}>0, \quad \rho=1 .
\end{align*}
$$

Let us estimate $\left|e_{i}(t)\right|(i=3,4)$. We have

$$
\begin{align*}
& \left|e_{i}(t)\right|=\left|z_{i}(t)-z_{p i}(t)\right|=\left|\Delta \Phi_{i}\left(e_{x 2}^{i}, t\right)\right|=\left|\Phi_{i}\left(e_{x 2}^{i}+x_{p 2}^{i}\right)-\Phi_{i}\left(x_{p 2}^{i}\right)\right| \leqslant \\
& \leqslant\left|\Delta M_{i}\left(e_{x 2}^{i-1}, t\right)\right|+\left|\Delta N_{i}\left(e_{x 2}, t\right) x_{p i}\right|+\left|N_{i}\left(e_{x 2}+x_{p 2}\right) e_{x i}\right|, \quad i=3,4 \tag{6.7}
\end{align*}
$$

Here (taking note of relations (3.28), (3.29), (3.9)-(3.11) and (6.5))

$$
\begin{align*}
& \Delta M_{3}\left(e_{x 2}, t\right)= M_{3}\left(e_{x 2}+x_{p 2}\right)-M_{3}\left(x_{p 2}\right)=-D_{2}^{-1} C_{22} \Delta \Phi_{21}\left(e_{x 2}, t\right)=-D_{2}^{-1} C_{22} e_{21} \\
& \Delta M_{4}\left(e_{x 2}^{3}, t\right)= M_{4}\left(e_{x 2}^{3}+x_{p 2}^{3}\right)-M_{4}\left(x_{p 2}^{3}\right)=-L_{4}^{-1}\left(\Phi_{2}\left(e_{x 2}+x_{p 2}\right)\right) \times  \tag{6.8}\\
& \times K_{4}\left(\Phi_{2}^{3}\left(e_{x 2}^{3}+x_{p 2}^{3}\right)\right)+L_{4}^{-1}\left(\Phi_{2}\left(x_{p 2}\right)\right) K_{4}\left(\Phi_{2}^{3}\left(x_{p 2}^{3}\right)\right)= \\
&=-L_{4}^{-1}\left(e_{2}+z_{p 2}\right) K_{4}\left(e_{2}^{3}+z_{p 2}^{3}\right)+L_{4}^{-1}\left(z_{p 2}\right) K_{4}\left(z_{p 2}^{3}\right)=\mu_{1}\left(e_{2}^{3}, t\right)+\mu_{2}\left(e_{2}^{3}, t\right)+\mu_{3}\left(e_{21}, e_{3}\right) \\
& \mu_{1}\left(e_{2}^{3}, t\right)=-D_{3}^{-1} D_{2}^{-1} G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)\left(C_{22} e_{21}+D_{2} e_{3}\right) \\
& \mu_{2}\left(e_{2}^{3}, t\right)=-D_{3}^{-1} D_{2}^{-1} \Delta G_{0}\left(e_{2}^{3}, t\right)\left(C_{20}+C_{22} z_{p 21}+D_{2} z_{p 3}\right)  \tag{6.9}\\
& \mu_{3}\left(e_{21}, e_{3}\right)=-D_{3}^{-1}\left(C_{32} e_{21}+C_{33} e_{3}\right) \\
& G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)=L_{2}^{-1}\left(e_{2}+z_{p 2}\right) \frac{\partial \Psi_{3}\left(e_{2}^{3}+z_{p 2}^{3}\right)}{\partial e_{2}}=
\end{align*}
$$

$$
=\left\|\begin{array}{l}
-k_{f 11}  \tag{6.10}\\
\frac{-\left(e_{21}+z_{p 21}\right)\left(e_{32}+z_{p 32}\right)}{e_{32}+z_{p 32}} e_{21}+z_{p 21}
\end{array} k_{f 11}+\frac{-F_{f 1}+e_{31}+z_{p 31}-k_{f 12}\left(e_{32}+z_{p 32}\right)}{e_{21}+z_{p 21}}\right\|
$$

where $z_{i k}=e_{i k}+z_{p i k}(i=2,3, k=1,2)$

$$
\begin{align*}
& L_{2}^{-1}\left(\Phi_{2}\left(e_{x 2}+x_{p 2}\right)\right)=L_{2 x}\left(e_{x 2}+x_{p 2}\right)=\left\|l_{2 x i j}\left(e_{x 2}+x_{p 2}\right)\right\|_{i, j=1,2} \cong \\
& \equiv L_{2}^{-1}\left(e_{2}+z_{p 2}\right)=L_{2 z}\left(e_{2}+z_{p 2}\right)=\left\|l_{2 z i}\left(e_{2}+z_{p 2}\right)\right\|_{i, j=1,2}= \\
& =\left\|\begin{array}{ll}
\cos z_{22} \\
-\frac{\sin z_{22}}{} \frac{\sin }{z_{21}} & \frac{\cos z_{22}}{z_{21}} \|
\end{array}\right\| \\
& \Delta G_{0}\left(e_{2}^{3}, t\right)=G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)-G_{0}\left(z_{p 2}^{3}\right)=\left\|\Delta g_{0 i j}\left(e_{2}^{3}, t\right)\right\|_{i, j=1,2} \\
& \Delta g_{011}\left(e_{2}^{3}, t\right)=0, \quad \Delta g_{012}\left(e_{2}^{3}, t\right)=-\left(e_{21}+z_{p 21}\right) e_{32}-z_{p 32} e_{21} \\
& \Delta g_{021}\left(e_{2}^{3}, t\right)=\left(e_{21}+z_{p 21}\right)^{-1} z_{p 21}^{-1}\left(z_{p 21} e_{32}-z_{p 32} e_{21}\right)  \tag{6.11}\\
& \Delta g_{022}\left(e_{2}^{3}, t\right)=\left(e_{21}+z_{p 21}\right)^{-1} z_{p 21}^{-1}\left[z_{p 21} e_{31}-k_{f 12} z_{p 21} e_{32}+\left(F_{f 1}-z_{p 31}+k_{f 12} z_{p 32}\right) e_{21}\right] \\
& \Delta N_{i}\left(e_{x 2}, t\right)=\Delta L_{x i}\left(e_{x 2}, t\right)=L_{i}^{-1}\left(\Phi_{2}\left(e_{x 2}+x_{p 2}\right)\right)-L_{i}^{-1}\left(\Phi_{2}\left(x_{p 2}\right)\right)= \\
& =D_{i-1}^{-1} \Delta L_{x, i-1}\left(e_{x 2}, t\right) \equiv D_{i-1}^{-1} \Delta L_{z, i-1}\left(e_{2}, t\right), \quad i=3,4  \tag{6.12}\\
& \Delta L_{2 x}\left(e_{x 2}, t\right)=\left\|\Delta l_{2 x i j}\left(e_{x 2}, t\right)\right\|_{i, j=1,2}=L_{2}^{-1}\left(\Phi_{2}\left(e_{x 2}+x_{p 2}\right)\right)- \\
& -L_{2}^{-1}\left(\Phi_{2}\left(x_{p 2}\right)\right)=L_{2}^{-1}\left(e_{2}+z_{p 2}\right)-L_{2}^{-1}\left(z_{p 2}\right) \equiv \Delta L_{22}\left(e_{2}, t\right)=\left\|\Delta l_{2 z i j}\left(e_{2}, t\right)\right\|_{i, j=1,2}  \tag{6.13}\\
& \Delta l_{2 x i j}\left(e_{x 2}, t\right)=l_{2 x i j}\left(e_{x 2}+x_{p 2}\right)-l_{2 x i j}\left(x_{p 2}\right) \equiv \Delta l_{2 z i j}\left(e_{2}, t\right)= \\
& =l_{2 z i j}\left(e_{2}+z_{p 2}\right)-l_{2 z i j}\left(z_{p 2}\right), \quad i, j=1,2 \\
& \Delta l_{2 z 11}\left(e_{2}, t\right)=\cos \left(e_{22}+z_{p 22}\right)-\cos z_{p 22}, \Delta l_{2 z 12}\left(e_{2}, t\right)=\sin \left(e_{22}+z_{p 22}\right)-\sin z_{p 22}, \\
& \Delta l_{2 z 21}\left(e_{2}, t\right)=-\frac{\sin \left(e_{22}+z_{p 22}\right)}{e_{21}+z_{p 21}}+\frac{\sin z_{p 22}}{z_{p 21}}, \\
& \Delta l_{2 z 22}\left(e_{2}, t\right)=\frac{\cos \left(e_{22}+z_{p 22}\right)}{e_{21}+z_{p 21}}-\frac{\cos z_{p 22}}{z_{p 21}} \tag{6.14}
\end{align*}
$$

Let us estimate the modulus $\left|\Delta L_{2 z}\left(e_{2}, t\right)\right|$ of the matrix function $\Delta L_{2 z}$ (6.13), (6.14). We have

$$
\begin{align*}
& \left|\Delta L_{2 z}\left(e_{2}, t\right)\right| \leqslant \sum_{i=1}^{2} \sum_{j=1}^{2}\left|\Delta l_{2 i j}\left(e_{2}, t\right)\right| \leqslant \sum_{i=1}^{2} \sum_{j=1}^{2} \mid\left[\left[\int_{0}^{1} J_{1 i j}\left(\theta e_{2}, t\right) d \theta\right] e_{2} \mid \leqslant\right. \\
& \leqslant 2 \varepsilon_{V}^{-2}\left|e_{21}\right|+2\left(1+\varepsilon_{V}^{-1}\right)\left|e_{22}\right| \leqslant k_{\Delta L 2 z}\left(\left|e_{21}\right|+\left|e_{22}\right|\right), t \geqslant t_{0} \tag{6.15}
\end{align*}
$$

where

$$
\begin{align*}
& J_{1 i j}\left(e_{2}, t\right)=\left\|J_{1 i j 1}\left(e_{2}, t\right), J_{1 i j 2}\left(e_{2}, t\right)\right\|=\frac{\partial \Delta l_{2 z i j}\left(e_{2}, t\right)}{\partial e_{2}} \\
& i=1,2 ; j=1,2 ; \quad J_{111}\left(e_{2}, t\right)=\left\|0,-\sin \left(e_{22}+z_{p 22}\right)\right\| \\
& J_{112}\left(e_{2}, t\right)=\left\|0, \cos \left(e_{22}+z_{p 22}\right)\right\| \\
& J_{1211}\left(e_{2}, t\right)=\frac{\sin \left(e_{22}+z_{p 22}\right)}{\left(e_{21}+z_{p 21}\right)^{2}}, \quad J_{1212}\left(e_{2}, t\right)=-\frac{\cos \left(e_{22}+z_{p 22}\right)}{e_{21}+z_{p 21}} \\
& J_{1221}\left(e_{2}, t\right)=-\frac{\cos \left(e_{22}+z_{p 22}\right)}{\left(e_{21}+z_{p 21}\right)^{2}}, \quad J_{1222}\left(e_{2}, t\right)=-\frac{\sin \left(e_{22}+z_{p 22}\right)}{e_{21}+z_{p 21}} \\
& \sup _{\tilde{e}_{2} \in\left[0, e_{2}\right], t \geqslant t_{0}}\left|J_{11}\left(\tilde{e}_{2}, t\right)\right|=1, \sup _{\tilde{e}_{2} \in\left[0, e_{2}\right], t \geqslant \geq_{0}}\left|J_{12 i 1}\left(\tilde{e}_{2}, t\right)\right|=\varepsilon_{V}^{-2} \\
& \sup _{\tilde{e}_{2} \in\left[0, e_{2}\right], i \geq \geq_{0}}\left|J_{12 i 2}\left(\tilde{e}_{2}, t\right)\right|=\varepsilon_{v}^{-1} \quad(i=1,2 ; j=1,2)  \tag{6.16}\\
& {\left[0, e_{2}\right]=\left\{\bar{e}_{2} \mid \bar{e}_{2}=\theta e_{2}, e_{2}+z_{p 2}=z_{2} \in \Omega_{\Psi_{2}} \quad 0 \leqslant \theta \leqslant 1\right\}} \\
& k_{\Delta L 2 z}=\max \left\{2 \varepsilon_{V}^{-2}, 2\left(1+\varepsilon_{v}^{-1}\right)\right\}
\end{align*}
$$

Taking relations (6.2), (6.5), (6.12)-(6.16) into account, we obtain

$$
\begin{align*}
& \left|e_{3}(t)\right| \leqslant\left|\Delta M_{3}\left(e_{x 2}^{2}, t\right)\right|+\left|\Delta N_{3}\left(e_{x 2}, t\right) x_{p 3}\right|+\left|N_{3}\left(e_{x 2}+x_{p 2}\right) e_{x 3}\right| \leqslant \\
& \leqslant\left|-D_{2}^{-1} C_{22} e_{21}\right|+\left|D_{2}^{-1} \Delta L_{2}^{-1}\left(e_{x 2}, t\right) x_{p 3}\right|+\left|D_{2}^{-1} L_{2}^{-1}\left(e_{x 2}+x_{p 2}\right) e_{x 3}\right| \leqslant \\
& \leqslant v_{30}\left[\left|e_{21}(t)\right|+k_{\Delta 22 z}\left(\left|e_{21}(t)\right|+\left|e_{22}(t)\right|\right)+v_{2}\left|e_{x 3}(t)\right|\right] \leqslant \\
& \leqslant v_{32}\left(\left|e_{21}(t)\right|+\left|e_{22}(t)\right|+\left|e_{x 3}(t)\right|\right) \leqslant 2 v_{32}\left|e_{2}(t)\right|+v_{32}\left|e_{x 3}(t)\right| \leqslant \\
& \leqslant v_{3}\left(\left|e_{x 2}(t)\right|+\left|e_{x 3}(t)\right|\right), t \geqslant t_{0} \tag{6.17}
\end{align*}
$$

where

$$
\begin{align*}
& v_{30}=\max \left\{\left|D_{2}^{-1}\right|\left|C_{22}\right|,\left|D_{2}^{-1}\right| k_{x p 3},\left|D_{2}^{-1}\right|\right\}, \\
& k_{x p 3}=\sup _{t \geqslant t_{0}}\left|x_{p 3}(t)\right|=\sup _{1 \geqslant t_{0}}\left|\Psi_{3}\left(z_{p 2}^{3}(t)\right)\right|, \quad v_{31}=\max \left\{1+k_{\Delta L 2 z}, k_{\Delta L 2 z}, v_{2}\right\}  \tag{6.18}\\
& v_{32}=v_{30} v_{31}, \quad v_{3}=\max \left\{2 v_{32} v_{2}, v_{32}\right\}
\end{align*}
$$

Let us estimate $\left|e_{4}(t)\right|$ (6.7). To do this we first estimate the modulus $\left|G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)\right|$ of the matrix function $G_{0}(6.10)$. We obtain

$$
\begin{aligned}
& \left|G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)\right| \leqslant \sum_{i=1}^{2} \sum_{j=1}^{2}\left|g_{0 i j}\left(e_{2}^{3}+z_{p 2}^{3}\right)\right| \leqslant\left|k_{f 11}\right|+ \\
& +\left|\left(e_{21}+z_{p 21}\right)\left(e_{32}+z_{p 32}\right)\right|+\left|\left(e_{21}+z_{p 21}\right)^{-1}\left(e_{32}+z_{p 32}\right)\right|+
\end{aligned}
$$

$$
\begin{align*}
& +\left|-k_{f 11}+\left(e_{21}+z_{p 21}\right)^{-1}\left[-F_{f 1}+e_{31}+z_{p 31}-k_{f 12}\left(e_{32}+z_{p 32}\right)\right]\right| \leqslant \\
& \leqslant k_{001}+k_{031}\left|e_{31}+z_{p 31}\right|+k_{032}\left|e_{32}+z_{p 32}\right| \leqslant k_{0 G 0}\left(1+\left|e_{31}+z_{p 31}\right|+\left|e_{32}+z_{p 32}\right|\right) \leqslant \\
& \leqslant k_{G 0}\left(1+\left|e_{31}\right|+\left|e_{32}\right|\right), \quad t \geqslant t_{0} \tag{6.19}
\end{align*}
$$

where

$$
\begin{align*}
& k_{001}=2 k_{f 11}+\left|F_{f 1}\right| / \varepsilon_{V}, \quad k_{031}=\sup _{z_{21} \in \Omega_{221}, \geqslant \geq_{0}}\left|z_{21}^{-1}(t)\right|=\varepsilon_{V}^{-1} \\
& k_{032}=\sup _{z_{21} \in \Omega_{221},>\geqslant r_{0}}\left[\left|z_{21}(t)\right|+\left(1+k_{f 12}\right)\left|z_{21}^{-1}(t)\right|\right]=k_{V}+\left(1+k_{f 12}\right) \varepsilon_{V}^{-1}  \tag{6.20}\\
& k_{0 G 0}=\max \left\{k_{001}, k_{031}, k_{032}\right\}, \quad k_{G 0}=k_{0 G 0}\left(1+k_{z p 31}+k_{z p 32}\right)
\end{align*}
$$

We will now estimate the modulus $\Delta G_{0}\left(e_{2}^{3}, t\right)$ for the matrix function $\Delta G_{0}(6.11)$. We have

$$
\begin{align*}
& \left|\Delta G_{0}\left(e_{2}^{3}, t\right)\right| \leqslant\left|\Delta g_{012}\left(e_{2}^{3}, t\right)\right|+\left|\Delta g_{021}\left(e_{2}^{3}, t\right)\right|+\left|\Delta g_{022}\left(e_{2}^{3}, t\right)\right| \leqslant \\
& \leqslant k_{121}\left|e_{21}\right|+k_{131}\left|e_{31}\right|+k_{132}\left|e_{32}\right| \leqslant k_{\Delta G 0}\left(\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|\right), t \geqslant t_{0} \tag{6.21}
\end{align*}
$$

where

$$
\begin{align*}
& k_{121}=\sup _{t \geqslant 1_{0}}\left[\left|z_{p 32}(t)\right|+\left|\left(e_{21}(t)+z_{p 21}(t)\right)^{-1} z_{p 21}^{-1}(t) z_{p 32}(t)\right|+\right. \\
& \left.+\left|\left(e_{21}(t)+z_{p 21}(t)\right)^{-1} z_{p 21}^{-1}(t)\left(F_{f 1}-z_{p 31}(t)+k_{f 12} z_{p 32}(t)\right)\right|\right]= \\
& =k_{z p 3}+\varepsilon_{V}^{-2}\left[\left|F_{f 1}\right|+k_{z p 31}+\left(1+k_{f 12}\right) k_{z p 32}\right] \\
& k_{131}=\sup _{t \geqslant t_{0}}\left|\left(e_{21}(t)+z_{p 21}(t)\right)^{-1}\right|=k_{031}=\varepsilon_{V}^{-1}  \tag{6.22}\\
& k_{132}=\sup _{t \geqslant t_{0}}\left[\left|e_{21}(t)+z_{p 21}(t)\right|+\left|\left(e_{21}(t)+z_{p 21}(t)\right)^{-1}\left(1+k_{f 12}\right)\right|\right]= \\
& =k_{V}+\varepsilon_{V}^{-1}\left(1+k_{f 12}\right), \quad k_{\Delta G 0}=\max \left\{k_{121}, k_{131}, k_{132}\right\}
\end{align*}
$$

Let us estimate the modulus $\Delta M_{4}\left(e_{2}^{3}, t\right)$ of the vector function $\Delta M_{4}(6.9)$. Using estimates (6.19), (6.20) and (6.21), (6.22) for the matrix functions $G_{0}(6.10)$ and $\Delta G_{0}(6.11)$, we obtain

$$
\begin{align*}
& \left|\Delta M_{4}\left(e_{x 2}^{3}, t\right)\right| \leqslant\left|\mu_{1}\left(e_{2}^{3}, t\right)\right|+\left|\mu_{2}\left(e_{2}^{3}, t\right)\right|+\left|\mu_{3}\left(e_{21}, e_{3}\right)\right| \leqslant \\
& \leqslant k_{\mu 1}\left(1+\left|e_{31}\right|+\left|e_{32}\right|\right)\left(\left|e_{21}\right|+\left|e_{3}\right|\right)+k_{\mu 2}\left(\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|\right)+ \\
& +k_{\mu 3}\left(\left|e_{21}\right|+\left|e_{3}\right|\right) \leqslant k_{\Delta M 4} \mid\left(1+\left|e_{31}\right|+\left|e_{32}\right|\right)\left(\left|e_{21}\right|+\left|e_{3}\right|\right)+ \\
& \left.+2\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|+\left|e_{3}\right|\right], \quad t \geqslant t_{0} \tag{6.23}
\end{align*}
$$

where

$$
\left|\mu_{1}\left(e_{2}^{3}, t\right)\right|=\left|-D_{3}^{-1} D_{2}^{-1} G_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)\left(C_{22} e_{21}+D_{2} e_{3}\right)\right| \leqslant
$$

$$
\begin{align*}
& \leqslant\left|-D_{3}^{-1} D_{2}^{-1}\right|\left|C_{0}\left(e_{2}^{3}+z_{p 2}^{3}\right)\right|\left|C_{22} e_{21}+D_{2} e_{3}\right| \leqslant \\
& \leqslant k_{\mu 1}\left(1+\left|e_{31}\right|+\left|e_{32}\right|\right) \mid\left(e_{21}\left|+\left|e_{3}\right|\right), \quad t \geqslant t_{0}\right. \\
& k_{\mu 1}=\left|D_{3}^{-1} D_{2}^{-1}\right| k_{G 0} k_{0 \mu 1}, \quad k_{0 \mu 1}=\max \left\{\left|C_{22}\right|,\left|D_{2}\right|\right\} \\
& \left|\mu_{2}\left(e_{2}^{3}, t\right)\right|=\left|-D_{3}^{-1} D_{2}^{-1} \Delta G_{0}\left(e_{2}^{3}, t\right)\left(C_{20}+C_{22} z_{p 21}+D_{2} z_{p 3}\right)\right| \leqslant \\
& \leqslant k_{\mu 2}\left(\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|\right), t \geqslant t_{0}  \tag{6.24}\\
& k_{\mu 2}=\left|D_{3}^{-1} D_{2}^{-1}\right| k_{\Delta G 0} \mid k_{0 \mu 2}, \\
& \sup _{t \geqslant 10}\left(\left|C_{20}\right|+\left.\left|C_{22}\right| z_{p 21}(t)\left|+\left|D_{2}\right|\right|\right|_{p 3}(t) \mid\right) \leqslant\left|C_{20}\right|+\left|C_{22}\right| k_{V}+\left|D_{2}\right| k_{23}=k_{0 \mu 2} \\
& \left|\mu_{3}\left(e_{21}, e_{3}\right)\right|=\left|-D_{3}^{-1}\left(C_{32} e_{21}+C_{33} e_{3}\right)\right| \leqslant k_{\mu 3}\left(\left|e_{21}\right|+\left|e_{3}\right|\right) \\
& k_{\mu 3}=\max \left\{\left|D_{3}^{-1} C_{32}\right|,\left|D_{3}^{-1} C_{33}\right|\right\}, \quad k_{\Delta M 4}=\max \left\{k_{\mu 1}, k_{\mu 2}, k_{\mu 3}\right\}
\end{align*}
$$

Using relations (6.5), (6.19)-(6.24), we estimate the modulus $\left|e_{4}(t)\right|$ (6.7). We obtain

$$
\begin{align*}
& \left|e_{4}(t)\right| \leqslant\left|\Delta M_{4}\left(e_{x 2}^{3}, t\right)\right|+\left|\Delta N_{4}\left(e_{x 2}, t\right) x_{p 4}\right|+\left|N_{4}\left(e_{x 2}+x_{p 2}\right) e_{x 4}\right| \leqslant \\
& \leqslant k_{\Delta M 4}\left[\left(1+\left|e_{31}\right|+\left|e_{32}\right|\right)\left(\left|e_{21}\right|+\left|e_{3}\right|\right)+2\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|+\left|e_{3}\right|\right]+ \\
& +k_{\Delta N 4}\left|e_{2}\right|+k_{N 4}\left|e_{x 4}\right| \leqslant k_{e 4}\left[3\left|e_{21}\right|+\left|e_{31}\right|+\left|e_{32}\right|+\right. \\
& +2\left|e_{3}\right|+\left(\left|e_{31}\right|^{2}+\left|e_{21}\right|^{2}\right) / 2+\left(\left|e_{32}\right|^{2}+\left|e_{21}\right|^{2}\right) / 2+ \\
& \left.+\left(\left|e_{3}\right|^{2}+\left|e_{31}\right|^{2}\right) / 2+\left|\left|e_{3}\right|^{2}+\left|e_{32}\right|^{2}\right) / 2+\left|e_{2}\right|+\left|e_{x 4}\right|\right] \leqslant \\
& \leqslant k_{e 4}\left(4\left|e_{2}\right|+4\left|e_{3}\right|+\left|e_{2}\right|^{2}+2\left|e_{3}\right|^{2}+\left|e_{x 4}\right|\right) \leqslant \\
& \leqslant v_{4}\left(\left|e_{x 2}\right|+\left|e_{x 3}\right|+\left|e_{x 4}\right|+\left|e_{x 2}\right|^{2}+\left|e_{x 3}\right|^{2}\right), t \geqslant t_{0} \tag{6.25}
\end{align*}
$$

where

$$
\begin{align*}
& k_{\Delta N 4}=2\left|D_{3}^{-1} D_{2}^{-1}\right| k_{\Delta L 2 z} k_{x p 4}, \\
& k_{x p 4}=\sup _{t \geqslant t_{0}}\left|x_{p 4}(t)\right|=\sup _{t \geqslant t_{0}}\left|\Psi_{4}\left(z_{p 2}^{4}(t)\right)\right| \\
& k_{N 4}=\left|D_{3}^{-1} D_{2}^{-1}\right| v_{2}, \quad k_{e 4}=\max \left\{k_{\Delta M 4}, k_{\Delta N 4}, k_{N 4}\right\}  \tag{6.26}\\
& v_{4}=k_{e 4} \times \max \left\{4 v_{2}, 4 v_{3}, v_{2}^{2}, 2 v_{3}^{2}, 1\right\}
\end{align*}
$$

This research was partially supported by the Russian Foundation for Basic Research (98-01-00581).

## REFERENCES

[^0]4. KRASOVSKII, A. A., ed., Handbook of Automatic Control Theory, Nauka, Moscow, 1987.
5. NIKAIDO, H., Convex Structures and Economic Theory. Academic Press, New York, 1968.
6. PERVOZVANSKII, A. A. A Course of Automatic Control Theory, Nauka, Moscow, 1986.
7. DEMIDOVICH, B. P., Lectures on the Mathematical Theory of Stability. Nauka, Moscow, 1967.
8. HARTMAN, P., Ordinary Differential Equations. Wiley, New York, 1964.


[^0]:    1. METELITSYN, I. I., Selected Papers. Theory of the Gyroscope. Theory of Stability, Nauka, Moscow, 1977.
    2. JIANG, Z. P. and NIJMEIJER, H., Tracking control of mobile robots: A case study in backstepping. Altomatica, 1997, 33, 7, 1393-1399.
    3. NEIMARK, Yu. I. and FUFAYEV, N. A., Dynamics of Non-Holonomic Systems. Nauka, Moscow, 1967.
